FORMATION OF COLEON A SKELETON FROM (-)-ABIETIC ACID

Takashi MATSUMOTO, * Sachihiko IMAI, * Kenji ONDŌ,

Nobuaki TAKEYAMA, and Kenji FUKUI

Department of Chemistry, Faculty of Science, Hiroshima University,

Higashisenda-machi, Hiroshima 730

By the treatment of Δ^6 -6-hydroxy-5 β H-dehydroabietic acid (18-6)-lactone with potassium hydrogensulfate or conc. sulfuric acid, the B ring aromatization and the C_1 - C_{10} bond cleavage occurred to give 1,10-secoabietane derivatives possessing coleon A skeleton.

Coleon A (I), which has been isolated by Eugster et al. as a pigment of Coleus igniarius Schweinf. (Labiatae), is a rare diterpene possessing a highly oxygenated 1,10-secoabietane skeleton. In their biogenetic view, coleon A is derived from ferruginol (II), by hydroxylation or/and dehydration at the positions marked with arrows, aromatization of ring B, and cleavage of C_1 - C_{10} bond (Fig. 1). During the course of our study on the reactivity of (-)-abietic acid (1) derivatives, we now found that, when Δ^6 -6-hydroxy-5 β H-dehydroabietic acid (18-6)-lactone (3) was treated with potassium hydrogensulfate or conc. sulfuric acid, both the B ring aromatization and the C_1 - C_{10} bond cleavage occurred. This communication describes a novel synthesis of coleon A skeleton.

Methyl Δ^6 -dehydroabietate⁴⁾ (2) was oxidized with perbenzoic acid in chloroform to give a mixture of C_6 -oxygenated products⁵⁾ which was immediately treated with p-toluenesulfonic acid monohydrate in refluxing toluene to yield the Δ^6 -lactone (3: 70% yield), mp 106.5-107°C, [α]_D - 116°, IR: 1800, 1692 cm⁻¹; NMR: 1.46, 1.52 (each 3H, s), 2.65, 5.96 (each 1H, d, J=2.5 Hz). The stereochemistry of C_5 -position in 3 was established as follows; 3 was transformed by catalytic hydrogenation on platinum oxide in acetic acid followed by esterification with diazomethane to the known⁶⁾ methyl 5 β H-dehydroabietate (4: 49% yield), together with an (18-6 α)-lactone of 6 α -hydroxy-5 β H-dehydroabietic acid⁷⁾ (5: 30% yield), mp 109-109.5°C, [α]_D - 45°, IR: 1758 cm⁻¹, NMR: 1.18, 1.29 (each 3H, s), 2.21 (1H,

d, J=8.5 Hz), 3.06 (2H, d, J=4 Hz), 4.88 (1H, dt, J=8.5, 4, and 4 Hz). Methanolysis of $\underline{3}$ with conc. hydrochloric acid gave methyl 6-oxo-5 β H-dehydroabietate ($\underline{6}$: 81% yield), mp 126-127°C, [α]_D + 36°, IR: 1723, 1700 cm⁻¹; NMR: 1.09, 1.18 (each 3H, s), 2.04 (1H, s), 2.90 (3H, s), 3.44 (2H, bs). On the other hand, methyl 6-oxodehydroabietate⁸) ($\underline{7}$) was never epimerized to $\underline{6}$ under the same condition.

The Δ^{6} -lactone (3) was fused with potassium hydrogensulfate (15 mole equivalent, 220°C, 12 h) to give three naphthalene derivatives which were separated by a careful column chromatography on silica gel. The first compound (5% yield), mp 130-130.5 $^{
m O}$ C, $\left[\alpha\right]_{
m D}$ + 81 $^{
m O}$, showed the presence of a naphthalene chromophore in UV spectrum, λ_{max} (ethanol): 235.5 nm (log ϵ =4.80), 281.5 (3.76), 293sh (3.63), 312 (3.07), 320sh (2.90), 327 (3.08), and γ -enol lactone function in IR spectrum, $v_{\rm max}$: 1798 cm $^{-1}$. In addition to those information, the observation of its NMR spectrum (Table 1) clarified its structure to be (3R)-2,3-dihydro-7-isopropyl-3,4dimethyl-3-propylnaphtho[2,3-b]furan-2-one (8). 9) This structure was further confirmed by the transformation with dimethyl sulfate and potassium hydroxide in aqueous acetone to a methyl ester (9: 50% yield), $[\alpha]_D$ - 31°, IR: 1725 cm⁻¹, NMR: 2.63, 3.53, 3.78 (each 3H, s), 6.86 (1H, s, 27% NOE enhancement by saturation of the signal 3.78), 7.83 (1H, d, J=9 Hz, 22% NOE enhancement by saturation of the Thus 8 has apparently coleon A (I) skeleton, a 1,10-secoabietane signal 2.63). The second (5% yield), mp 118-119 $^{\circ}$ C, $[\alpha]_{D}$ + 130 $^{\circ}$, possesses an allyl group as a partial structure (IR: 987, 910 cm⁻¹; NMR: Table 1). On catalytic hydrogenation (5% palladium-carbon in methanol), it gave 8, so it must be a dehydro The last compound, which was a main product (32% yield, $[\alpha]_n$

+ 45°), showed the molecular weight 606 (mass spectrum: $M^{+}=606$). spectrum (Table 1), a triplet signal (3.07) suggested the structure to be a dimer (11) possessing an ether linkage at both the ω -positions of propyl groups in two monomers (8). This ether dimer (11) was converted to a tosylate (12:45%) yield, $[\alpha]_{\rm D}$ + 69°, IR: 1795, 1637, 1360, 1172 cm⁻¹; NMR: Table 1) by heating with ptoluenesulfonic acid monohydrate in sym-tetrachloroethane. Subsequently 12 was converted to an iodide (13: 89% yield, $[\alpha]_D + 19^O$, NMR: Table 1) by refluxing with sodium iodide in acetone. Treatment of $\frac{13}{2}$ with potassium t-butoxide in dimethyl sulfoxide gave $\frac{10}{10}$ (6% yield) and a hydroxyl derivative ($\frac{14}{10}$: 25% yield), $\left[\alpha\right]_{D}$ + 50°, IR: 3620, 3450br, 1795, 1637 cm⁻¹; NMR: Table 1.

Our next effort was directed toward the more effective condition. Δ^6 -lactone (3) was treated with conc. sulfuric acid in refluxing toluene (2 h), the tosylate (12: 17% yield) was obtained. The yield of this reaction was further improved by treatment of 3 with conc. sulfuric acid in refluxing acetic acid (3 h), and in this case, an acetate ($\underline{15}$: 47% yield, $[\alpha]_D$ + 11°, IR: 1797, 1730, 1640 cm⁻¹; NMR: Table 1) was obtained. Hydrolysis of 15 with conc. hydrochloric acid in aqueous methanol gave 14 which was converted to the tosylate (12: 49% yield) by treatment with p-toluenesulfonyl chloride in pyridine or to a chloride (16: 83% yield, mp 63-65.5°C, $[\alpha]_{D}$ + 10°, NMR: Table 1) with triphenylphosphine in carbon tetrachloride. The latter (16) was also subjected to the elimination reaction to yield the allyl compound (10: 6% yield).

Table 1. NMR spectra of 2,3-dihydronaphtho [2,3-b] furan-2-one derivatives 3,a)

Compd.	С ₃ -Ме	C ₄ -Me	С ₅ -н	с ₆ -н	C ₇ - ⁱ Pr	с ₈ -н	с ₉ -н	C ₃ -substitu	ent
8	1.59s	2.61s			1.32d,6H(7) 3.02qui,1H(7)	7.50d (2)	7.20s	0.70-1.25m,5 ca.2.05m,2H	Н
<u>10</u>	1.64s	2.67s	7.86d ^{c)} (9)	7.29dd (9;2)	1.35d,6H(6.5) 3.04qui,1H(6.5		7.22s	2.79d,2H(6.5 4.75-5.60m,3) d)
11	1.58s	2.59s	7.83d (9)	7.26dd (9;2)	1.31d,6H(7) 3.00m*,1H	7.47d (2)	7.13s	ca.2.lm,2H $ca.1.lm,2H$	3.07t* 2H(6)
<u>12</u> e)	1.54s	2.57s			1.3ld*,6H(7) 3.0lqui,lH(7)	7.50d (2)	7.14s	ca.2.05m,2H ca.1.2m*,2H	3.77t 2H(6)
<u>13</u>	1.64s	2.69s	7.82d (8)	7.27dd (8;2)	1.33d*,6H(7) 3.03m*,1H	7.49d (2)	7.18s	ca.2.2m,2H ca.1.4m*,2H	3.03t* 2H(6)
<u>14</u> f)	1.59s	2.61s	7.84d (9)	7.27dd (9;2)	1.32d,6H(7) 3.02qui,1H(7)	7.51d (2)	7.21s	ca.2.lm,2H ca.1.lm,2H	3.33t 2H(6)
<u>15</u> 9)	1.62s	2.62s	7.81d (8)	7.26dd (8;2)	1.33d*,6H(7) 3.01qui,1H(7)	7.49d (2)	7.20s	ca.2.lm,2H ca.1.2m*,2H	3.83t 2H(6)
<u>16</u>	1.63s	2.64s	7.82d (9)	7.26dd (9;2)	1.33d*,6H(7) 3.02qui,1H(7)	7.48d (2)	7.20s	ca.2.25m,2H ca.1.4m*,2H	3.35t 2H(6)

a) Numerals in parentheses represent coupling constants in Hz.

b) 18% NOE enhancement by saturation of a signal 2.61 was observed.
c) 18% NOE enhancement by saturation of a signal 2.67 was observed.
d) The first-order analysis of this multiplet signal showed three vinyl protons at 4.87(dd,J=9.5 and 2.5 Hz), 5.00(dd,J=17 and 2.5 Hz), and 5.30(dd of t,J=17, 9.5, 6.5, and 6.5 Hz).
e) 2.33(3H,s), 7.14(2H,d,J=8 Hz), and 7.58(2H,d,J=8 Hz) for p-tosyloxy group.

f) 1.82(1H,bs,exchangeable with deuterium oxide) for hydroxyl group.

g) 1.91(3H,s) for acetoxy group.

Signal partially overlapped.

Thus, coleon A skeleton was effectively obtained from (-)-abietic acid $(\underline{1})$. The synthesis of coleon A (I) is proceeding now.

Acknowledgement. The authors are grateful to Arakawa Chemical Co., Ltd. for the supply of rosin. This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education.

References and Notes

- 1) C. H. Eugster, H. -P. Küng, H. Kühnis, and P. Karrer, Helv. Chim. Acta, <u>46</u>, 530 (1963)
- 2) D. Karanatsios and C. H. Eugster, Helv. Chim. Acta, $\underline{48}$, 471 (1965)
- 3) All of communicated compounds were supported by elemental analysis. IR spectra and optical rotations were measured in chloroform. NMR spectra were taken with a Hitachi Model R-22 NMR spectrometer (90 MHz) in carbon tetrachloride. The chemical shifts are presented in terms of δ value; s: singlet, bs: broad singlet, d: doublet, dd: double doublet, td: triple doublet, t: triplet, dt: double triplet, qui: quintet, m: multiplet.
- 4) G. Dupont, R. Dulou, G. Ourisson, and C. Thibault, Bull. Soc. Chim. Fr., 1955, 708
- 5) G. Defaye-Duchateau, Bull. Soc. Chim. Fr., $\underline{1964}$, 1469; by a careful column chromatography of the mixture, we obtained methyl 6-oxo-8) ($\underline{7}$: 25-30% yield), 7 ξ -benzoyloxy-6 α -hydroxy- (7-epimer mixture: 30-35% yield), 6 α ,7 α -dihydroxy- (8-10% yield), 6 α ,7 β -dihydroxy-dehydroabietate (5-8% yield) and Δ^5 -6-hydroxy-7-oxodehydroabietic acid (18-6)-lactone (2-3% yield).
- 6) E. Wenkert, A. Afonso, P. Beak, R. W. J. Carney, P. W. Jeffs, and J. D. McChesney, J. Org. Chem., $\underline{30}$, 713 (1965); E. Wenkert and B. L. Mylari, ibid., $\underline{30}$, 4387 (1965). Our sample ($\underline{4}$) showed $\left[\alpha\right]_{\overline{D}}$ 79° .
- 7) Another (18-6 β)-lactone of 6 β -hydroxy epimer was obtained (0.5% yield), mp 133-134 $^{\circ}$ C, $\left[\alpha\right]_{D}$ 90 $^{\circ}$, IR: 1760 cm $^{-1}$, NMR: 1.41 (6H, s), 1.77 (1H, d, J=11 Hz), 2.88 (1H, dd, J=15 and 11 Hz), 3.18 (1H, dd, J=15 and 5 Hz), 4.38 (1H, td, J=11, 11, and 5 Hz).
- 8) The compound $(\frac{7}{2})$ was obtained as described in reference 5 $(\frac{7}{2}: [\alpha]_D + 156^O$, IR: 1720, 1705 cm⁻¹; NMR: 1.18, 1.44 (each 3H, s), 3.15 (1H, s), 3.52 (2H, s), 3.58 (3H, s)). cf. R. C. Cambie and R. A. Franich, Aust. J. Chem., 24, 571 (1971)
- 9) The configuration regarding C_3 -position in coleon A (I) has not been decided. All of the 2,3-dihydronaphtho[2,3-b]furan-2-one derivatives in this communication should retain the chirality R as shown in $\underline{3}$.

(Received February 8, 1980)